Structure Function Studies for Turbulent Interstellar Medium
نویسنده
چکیده
We study structure functions of rotation measures in the Canadian Galactic Plane Survey (CGPS) region and the North Galactic Pole (NGP) to extract the interstellar medium (ISM) fluctuation information. The CGPS data are divided into three longitude intervals: 82 < l < 96 (CGPS1), 115 < l < 130 (CGPS2) and 130 < l < 146 (CGPS3). The structure functions of all three regions have large uncertainties when the angular separation is smaller than δθ ≈ 1. A power law can fit the structure function well for δθ > 1. The power law indices get smaller from CGPS1 to CGPS3 and the amplitudes decrease. The variations of the large-scale field and the electron density have only negligible effects on the structure function and thus cannot account for the changes, indicating that the turbulent properties of the Galactic ISM are intrinsically longitude-dependent. The Kolmogorov-like fluctuation spectrum of the electron density or the magnetic field should produce a power law structure function with an index of 5/3 or 2/3, neither of which is consistent with our results of small indices in the three sub-CGPS regions. For the NGP region, the structure function is flat, showing that the rotation measures are mostly intrinsic to the extragalactic sources, and the ISM is very random in that part of our Galaxy. It is obvious that the ISM fluctuation is latitude-dependent when comparing the results in the NGP region and the CGPS regions.
منابع مشابه
Physical structure of the local interstellar medium
The physical structure and morphology of the interstellar medium that surrounds our solar system directly effects the heliosphere and the interplanetary environment. High resolution ultraviolet absorption spectra of nearby stars and the intervening interstellar medium, observed by the Hubble Space Telescope, provide important information about the chemical abundance, ionization, temperature, ki...
متن کاملINTERSTELLAR TURBULENCE I: Observations and Processes
■ Abstract Turbulence affects the structure and motions of nearly all temperature and density regimes in the interstellar gas. This two-part review summarizes the observations, theory, and simulations of interstellar turbulence and their implications for many fields of astrophysics. The first part begins with diagnostics for turbulence that have been applied to the cool interstellar medium and ...
متن کاملPulsar Scintillation Studies and Structure of the Local Interstellar Medium
Results from new observations of pulsars using the Ooty Radio Telescope (ORT) are used for investigating the structure of the Local Interstellar Medium (LISM). The observations show anomalous scintillation effects towards several nearby pulsars, and these are modeled in terms of large-scale spatial inhomogeneities in the distribution of plasma density fluctuations in the LISM. A 3-component mod...
متن کاملRemarks on Statistical Properties of the Turbulent Interstellar Medium
The supernova-driven interstellar medium in star-forming galaxies has Reynolds numbers of the order of 10 or even larger. We study, by means of adaptive mesh refinement hydroand magnetohydrodynamical simulations that cover the full available range (from 10 kpc to sub-parsec) scales, the statistical properties of the turbulent interstellar gas and the dimension of the most dissipative structures...
متن کاملSynthetic Observations of Carbon Lines of Turbulent Flows in Diffuse Multiphase Interstellar Medium
We examine observational characteristics of multi-phase turbulent flows in the diffuse interstellar medium (ISM) using a synthetic radiation field of atomic and molecular lines. We consider the multi-phase ISM which is formed by thermal instability under the irradiation of UV photons with moderate visual extinction AV ∼ 1. Radiation field maps of C, C, and CO line emissions were generated by ca...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2004